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The aim of this paper is to define vector Padé-type approximants and vector
Padé approximants following the same ideas as in the scalar case. This approach
will be possible using Clifford’s algebra structures. Vector Padé approximants will
be derived from the theory of formal vector orthogonal polynomials. Connections
between generalised inverse Padé approximants of Graves-Morris and vector-
valued Padé approximants of Roberts will be given. New results will be proved.
© 1999 Academic Press

1. INTRODUCTION

There are various definitions for vector Padé approximants. We are
concerned with those suggested by Wynn [29,30]. These vector Padé
approximants are closely connected to the vector g-algorithm. In fact,
Wynn [29,30] introduced continued fractions in a non-commutative
algebra. He also defined vector continued fractions with the Samelson
inverse. He was led to use McLeod isomorphism between vectors and some
matrices (Clifford numbers) [18] for establishing results for the Padé-
approximants. Then, this theory was developed by Graves-Morris in
[10,11] and Graves-Morris and Jenkins in [12]. Using the theory of
vector continued fractions, Graves-Morris gave an axiomatic approach to
vector-valued rational interpolants and results on Padé approximation.
In particular, a five-term recurrence relationship was established for the
denominator polynomials. All results about these vectors are generaliza-
tions of the corresponding ones for the scalar case. However, the algebraic
structures cannot be generalized. For example, no three-term recurrence
relation was obtained.

In [21,22], Roberts gave another approach to vector Padé approxi-
mants, algebraically equivalent to the scalar case, using Clifford algebra.
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He provided a three-term recurrence relationship for the numerators and
the denominators of diagonal and subdiagonal vector Padé approximants.
He established that the two approaches are identical for real analytic data.

No approach using orthogonal polynomials was given for these vector
Padé approximants.

The aim of this paper is to fill up this gap. A general framework will be
given, similar to the scalar [ 4] and the non-commutative cases [ 7, 8 ]. Thus,
using Clifford algebra, the construction of vector Padé-type approximants
and vector Padé approximants will be presented. The approach is based
on formal vector orthogonal polynomials [24] for deriving vector Padé
approximants. Then, we shall establish that these vector Padé approxi-
mants coincide with those of Graves-Morris and Roberts [ 10, 21].

The formal vector orthogonal polynomials will allow us to give new
results for the vector Padé approximants by exploiting the orthogonality.
In particular, we shall give expressions for the numerator and the denomi-
nator of the vector Padé approximants in terms of designants, necessary
and sufficient conditions of existence and uniqueness, new recurrence rela-
tionships, and others properties.

The vector Padé-type approximants can be interesting (as in the scalar
case) for studying the poles of a vector-valued function, since, using
Clifford algebra, the analogy with the scalar case could be exploited.
However, this point will not be treated here.

2. CLIFFORD ALGEBRA AND GROUP, DESIGNANTS

Let us first recall some definitions and elementary properties of a Clifford
algebra, group and designants.

2.1. Clifford Algebra and Group

Let {e,..,e,;} be an orthonormal basis of the Euclidean real vector
space R? The usual scalar product of two vectors x, y € R? will be denoted
by (x, »). The universal real Clifford algebra associated to R¢ is a unitary,
associative but non-commutative (for d> 1) Algebra A,, containing R and
R (see [1,20]), for which, the Moore generalized inverse [19] of x e R?
coincides with the inverse of x in A, i.e,

VxeRY, — x?=(x,x). (1)
A, is a real vector space of dimension 2¢ spanned by the products

ey e, 0<ij< - <i,<d.
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There are various matrix representations of e; (see, for example, [ 16, 18,
291).
Setting x=3"7_, x;e; and y=3Y?_, y,e;, we have the main relations

xy+ yx=2(x, y) (2)
and
xy=(x,y)+ z (xiJ’j_ij’i) e;e;. (3)
i<j

It is easy to see that A, is not a division algebra; for example,
1—e, #0, l+e; #0, and (1—ey)(1+e,)=0.
Premultiplying the relation (2) by x, we deduce
Vx, v, ze RY, xyx=2(x, y) x—|x|? y, (4)
and similarly we obtain
Vx, y, ze RY, xyz +zyx e R% (5)

Thus, the product xyx belongs to R? for all x, y belonging to R?.
Let us set

G,= muA,meN*,u-eRd\O )
~{1u e R0}

i=1

G, forms a group for the multiplicative law [1]. This group is called the
Clifford group. The spinor norm is a generalization to G, of the 2-norm in
R¢ defined in the following way.

Let ~ be the anti-automorphism on A, defined on the basic elements by

=1, e =e, i=1,..,d

and (6)

We obtain immediately

VueRY VxeA, VyeA,  id=u Xy=Jj% X=x. (7)
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Let u be an element of G,. Then there exists uy, ..., u, € R?\{0} such that
u=u,..u,. We have
uit = lu|®>=uy - u,ily iy = ug |- a2 (8)

The spinor norm is the map | -| defined from G, into R* by |lu| =/ui.
In general, uii does not belong to R* when u is an arbitrary element of A .

2.2. Designants

In the scalar case, Padé approximants have a determinantal representa-
tion (see [2,4]), but Dyson [9] showed that there is no determinantal
theory in a non-commutative algebra.

Thus, for providing formally a similar formula in our case, we need to
use designants. They were introduced by Heyting [ 15]. They correspond to
Gaussian elimination in a non-commutative algebra. We recall here only
the definition for a system of two linear equations in two unknowns. For
the general case and more details, see [ 15, 257.

Consider the system in x,, x, € A,, with coefficients on the right

{XI““”Z“”:])“ agbicAy i j=1,2. (9)
X1z + X2l = b, Y

Suppose that ay; is invertible, then by eliminating the unknown Xx; in the
second equation of the system, we get

—1 _ —1
Xo(app —appayy ay)=by—biay; a. (10)
Set
ap  dypp 1
=dyp —dpdyy dy- (11)
dpy Ao,

It is an element of A, which is called the right designant of the right system
(9). If this designant is invertible then the system has a unique solution and
X, is obviously given by the

ay; by ap dpp

(12)

.XZ=

ay by, |ay axp|,

A similar construction exists for a left designant.
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3. VECTOR PADE-TYPE APPROXIMANTS

Scalar Padé-type approximants and their link to general orthogonal
polynomials are extensively studied by Brezinski and other authors [2, 4].
This study was generalized to the non-commutative case by Draux [7, 8].
There exist several generalizations to the vector case (see, for example,
[13] for a review). Our aim here is to provide an orthogonal theory for the
existing vector Padé approximants of Graves-Morris and Roberts. The
approach is the following: the real vector space R? is considered as a subset
of the universal Clifford algebra A4,. Since 4, is non-commutative theoreti-
cal results on the subject will be applied. Then, the connection with the
vector valued Padé approximants of Graves-Morris and Roberts will be
established. We shall also obtain new results for these approximants.

Let us define Padé-type approximants as done by Brezinski [4] in the
scalar case and Draux [8] in the non-commutative one.

Let P denote the set of polynomials in one real variable whose coef-
ficients belong to A, and let P, denote the set of elements of P of degree
less than or equal to k.

We consider the formal vector power series

f(X)=co+cyx+ -+, x"+ -+, c; e R4, (13)

and a polynomial of P, of degree k
k
v(x)=Y, b;x". (14)
i=0

The coefficient b, is assumed to be invertible. In this case, v is said to be
quasi-monic. We define the polynomial w by

w(z)=1<”(x)_”(’)>, (15)

xX—t
where / is the left A -linear functional, acting on x, defined as [24]
LP—-A, Ixt = (AxY) = c;4, VieA, VieN. (16)

Thus, w is a quasi-monic polynomial of P, _, of degree k — 1.
We set

o(2) = tko(t 7Y, Ww(t) =k~ hw(k 1. (17)

Then, we obtain the

THEOREM 1. w(t)[#(1)] 1 — f(1) = O(5).
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Proof. Expanding (v(x)—uv(t))/(x —t) and applying /, we get

We deduce that
k—1 sk—1—1
w(t) = z < Z Cibl+i+1>[k_1_l-
I1=0 i=0

Computing the product f(¢) o(¢), we obtain

(1) o(t) = <§ citi><j§ bk_jtj>

k—1
m:O(

Since w(t)= o Cibr_my i) ™, we get immediately

S0y o(t) —w(t) = O(¢). |

DeFINITION 1. w[#] ! is called a left vector Padé-type approximant
and it is denoted by (k— 1/k)®.
v is called the generating polynomial of (k — 1/k)®.

Remarks. (1) Obviously, we have similar definitions and results for
the right linear functional r [24]. More precisely, if instead of /, we con-
sider r and if we define w as

w(z):r<”(’”‘““)>, (18)

xX—1
where r is the right A -linear functional, acting on x, defined by
rP—A,, Axt— r(Ax") = ic;, VieA, VieN, (19)

then w is a quasi-monic polynomial of P, _; of degree k — 1.
The same proof as above leads to

[o(6)] " w(r) — f(1) = O(1F).

[9(¢)] ' w(z) is called a right vector Padé-type approximant and it will be
denoted by (k— 1/k)®.
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(2) In general, left and right vector Padé-type approximants are
different. Let us give a simple example: we take an arbitrary generating
polynomial of degree 1

U(l):b0+blt, ﬁ(l):b0l+bl.

For the left case, we have

w(z) =1<”(x))€__);(’)> =Ib,)=coby,  W(1)=cob,,

and
(0/1)D = coby[bot +b,] 7"
For the right case, we have

v(x) — x(z)
xX—1

w(t)=r< >=r(b1)=blco, w(t)=b,cq,

and
(/1) =[bot+b,]17 " byco.

As the multiplicative law is non-commutative, (0/1)) and (0/1)" are dif-
ferent. We shall show, in the sequel, that this situation is totally different
for vector Padé approximants: left vector Padé approximants coincide with
right vector Padé approximants.

(3) In general, for an arbitrary choice of v, (k—1/k)® and
(k—1/k)"” do not belong necessarily to R for all ¢ in R. For example, we
have

O/ (1) = ol 1+bobi 1] 1=y 3. (1) (bobi )i e
i=0

The elements (byb; ') € A, do not belong necessarily to R? This is tedious,
since we desire that the expansion of (kK — 1/k)”) into a formal power series
must be of the same nature than f. However, this situation can be always
circumvented by choosing v with real coefficients.

(4) The remark (3) does not occur for vector Padé approximants as
will be shown in the sequel. The expansion of a vector Padé approximant
of finto a formal power series is of the same nature as f.

(5) The introduction of vector Padé-type approximants is motivated
by the same considerations as in the scalar case (poles).
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We shall now define left and right vector Padé-type approximants with
a numerator and a denominator of arbitrary degrees.

By convention, we take ¢;=0 for i<0 and 7" ,s,=0 for m <0. Let us
denote by f,, the formal power series

o0
0= it VmeZ.
j=0

So, we have
e} m—1 )
(1) = 3 Cny 7= [0 = 3 ot
Jj=0 j=0
Let (k—1/k)%) (respectively (k—1/k)?") be the left (respectively the right)
vector Padé-type approximants of f,,.

DEFINITION 2. 37001 e t' +1™(k —1/k)$) (1) (respectively 370" ¢;1'+
"k —1 /k)};) (7)) is called the left (respectively the right) vector Padé-type
approximant of type (k — 1+ m/k) and denoted by (k — 1+ m/k)i" (respec-
tively (k —1+m/k)?).

Let us denote by /' and r the linear functionals defined by
VieAy, VjieN, 1P0x7) = ¢; 4 2, rO(Ax?)y=Jc;, ;. (20)

We recall the construction of (k—1/k)%¥) (1) =w(z)[#(z)]", but with the
replacements of f— f,,, [ — [ where

w(t) = 1 <U(x)—v(f)>

xX—t
So,
_ l‘_l)
g (U0 =0 >
(o) (A=),
and

Je—1/k)D(1) = 410 <”
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Similar formulae exist for right vector Padé-type approximants of type
(k—1+mjk)

U(l_l)—v(x)>_

(= 1 () = igatey] v (U

We have the following result

THEOREM 2. For all ke N, VmeZ such that m> —k + 1,

(k—1+m/k){ (1) — f(1) = O(“+™), (21)
(k—1+mfl)i? (1) — f(1) = O(£*™). (22)

Proof. From Theorem 1, we have VkeN, VmeZ, (k—1/k){" (1)~
fon(t) = O(t%). Since k +m >0, we get t™(k — l/k)};) (1) —t"f, (1) = O(tF+™)
from which we obtain (k —1+m/k)\" (1) — f(r) = O(#**™). The same proof
is valid for (22). |

We will now give some properties of left vector Padé-type approximants.
The superscript (/) in the notation will be omitted. Similar results hold for
the right case. In the sequel, we shall only treat the left case.

Let us denote by

h(t)y="> dt'
i=0

the reciprocal power series of f, that is, the series satisfying

h(t) f(t) = f(2) h(1) =1. (23)
From (1), we have
_ S
M=o (24

Thus 4 exists if and only if |¢y] #0 and, in that case, the coefficients d;
belong to RY The coefficients d; are given by solving the linear system
in A,
d =1
{Goce . (25)
i—odici_; =0, i=1.
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PROPERTY 1. Let V(t)=cov(t) +w(t) be the generating polynomial of
(kfk),, with wO () = ID((v(x) —v(2))/(x —t)). We have
(kjk) ()(k/k)f(2) = (k[k),()(K/k), (1) = 1.
Proof. We have
(kfk) () =V(O[o()] 7 =Y c;t'+ O(F+).

i=0

Let 4(¢) be the numerator polynomial for (k/k),. Then (k/k), can be
written as

k
(k/k) (D =q@)[ V()] 7' = .Z dit'+ O+ ).

i=0

Thus
(k/l)n (O)(kfk)p (1) =1+ O(5*),
and
gLo(n] 7 =1+ 0.
We obtain

G(t)=o(t)+ O(*+1).

As ¢ is a polynomial of degree k, we obtain §=10. ||

PROPERTY 2. Let W be a polynomial of degree p and V a polynomial of
degree q such that V(0) is invertible and W(t)[ V(t)] ' — f(t)= O(t?*").
Then W(t)[V(1)] ' = (p/q);(t) with the generating polynomial V.

Proof. We have
W(t) V(1) = f(1) = Oz *1),
and

pP—9q

(plg); (1))=Y c i’ +1P= 9" (qg—1/q)

Tp—q+1
i=0

(1).
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Then (p/q), can be written

(pla); () =FL ()]~ =F[ V(1)]~

with the degree of r equal to p.
Since

WOV =F(O[ ()]~ + 01,
we obtain
W(t) =i+ 0(t?+1).
As r is a polynomial of degree p it follows Fr=W. |

We can also give properties of linearity and homographic covariance
and a compact formula deduced from that of Nuttall. Let us now give a
formula for the error.

THEOREM 3. The error of left vector Padé-type approximation is given by

J() = (k= 1/k), (1) = t“lo(x)(1 — xt) =) (5(1)) 7!

= ( i ﬂfti> (o(e))~1,
i=0
Proof. From w(t)=I((v(x)—wv(t))/(x—1)), it is easy to see that
_ (") u(x)
wio=1(F5) = (755
(o) u(x)
_l<l—lx>_lkl<1—tx>

= f(t)o(t) — 1 <U(X)>

1 —tx

with p,=I(xv(x)).

The first equality of the theorem is obtained. Then, expanding v(x)/(1 —tx)
into a power series and applying the functional /, we get

w(t)= f(t) o(t) —t* <Zlv(x)x >

=ﬂmwo—ﬁ<§ﬂm>
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Thus, we obtain the second equality of the theorem

BO0) =0~ T e o]
i=0
More generally, we have the

THEOREM 4. Let v denote the generating polynomial of (p/q);. We have
the error formula

S(t) = (p/a) (1) =t HP= 4 D(o(x)(1 —ex)~H[o(0)]

The proof is the same as above.

4. VECTOR PADE APPROXIMANTS

For obtaining a higher order of approximation, we see from the error
formula that we can choose the generating polynomial v such that

(x'v(x))=0, for i=0,.,m<k—l. (26)

Since v has the degree k, m cannot be greater than k — 1. For the maximum
value m =k — 1, we obtain the left vector Padé approximant which will be
denoted by [k —1/k]{". If instead of /, we consider r, we obtain the right
vector Padé approximant, which will be, denoted by [k—1/k]{"’. The
generating polynomial v satisfies

(xv(x))=0, for i=0,., k—1. (27)

The relation (26) can be written
k
Y ey b;=0, i=0,.,k—1 (28)
j=0

Thus, as in the scalar case, the polynomial v is orthogonal with respect to
the left linear functional /.

Let us denote by L (respectively by R{”) the orthogonal polynomial
of degree k with respect to the left linear functional /” (respectively to the
right linear functional ™) and K{ (respectively Q\") its associated poly-
nomial.
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We set
Cn Cntk—1
(n) _ :
MP =
Chnyvk+1 °° Cnyok—2

M is the matrix of the system connected to the orthogonality system
[24]

[P(LM)=0, for i=0,.,k—1. (29)

I (respectively ™) is said to be definite if the matrix M{" is invertible
(see [24] for other characterizations and details).

The error formula for the vector Padé approximant becomes

THEOREM 5. f(1)— [k —1/k], (1) = t®OUX Li(x)(1 —xt) ") [ Li(2)]

The proof is obvious from Theorem 4.

Theorem 5 gives us the

COROLLARY 1. If [ is definite, then the left vector Padé approximant
[k—1/k] is equal to the right vector Padé approximant [k —1/k]{".

Proof. From Theorem 4, we have

f(O)—Tk=1klP=0*) and  f(0)—[k—1/k]} = O(£*).
By subtracting the second equality from the first one, we obtain
K(O[Li(1)]1 7' = [R()]1 7" Qul1) = O(+7)

and thus, we have

Ri(1) Ki(1) — Op(1) Li(t) = O(£%%).

As the left hand-side is a polynomial of degree less than 2k — 1, it is identi-
cally zero. |

As in the scalar case [4], we can give the

DermNiTION 3. The quantity

pP—q

Z Cili+ tp7q+II?EIpfq+l)(t)[]j;pfq+1)(t)] —1

i=0
is called the vector Padé approximant of type (p/¢q) and it will be denoted
by [p/q]y-
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Thus, we obtain the error formula

THEOREM 6. f(1) — [ p/q],(1) = tP+aFH P =2+ DL+ (] —xp)~ ")
[Ly=+ ()]~
q

Proof. This is obvious from Theorem 4. ||

All the properties of Section 3 are still valid for the vector Padé
approximants, in particular we have

TueoreM 7. If M{"*Y is invertible with keN and neZ such that
n=zk—1 and if h is the reciprocal series of f formally defined by
f(t) h(t)=1, then

Lk +n/k], (O)Lk/n+ k], (1) = [k/n+ k1, (O0Lk +n/k] (1)

In [10], Graves-Morris provided a practical Thiele-fraction method
for rational interpolation of vectors, based on the Samelson inverse. He
showed that these rational interpolants can be computed recursively by the
Claessens’ ¢-algorithm, implemented with the Samelson inverses. Vector-
valued Padé approximants are showed as a limit case of these interpolants
and can be computed by the standard vector ¢-algorithm of Wynn.

In [21], Roberts gave another approach similar to the scalar case.
It consisted in finding two polynomials p,, and ¢, of degree respectively
equal to m and n, whose coefficients are in A,, and such that
P X)[qa(x)] 71— f(x) = O(x"*™+1), where f is the power series given by
(13). He adopted the Baker convention ¢,(0) = 1. The construction of these
approximants is based on vector continued fractions. He gave also a three-
recurrence relationship for the numerator and the denominator of these
approximants. However, this three-term recurrence relationship involved
some vector o, which is unknown. He established that these approximants
coincide with those of Graves-Morris for real analytical data. No condi-
tions of existence and no error formula were given.

Comparing with these vector Padé approximants, we see that they are
identical to the Padé approximants defined above (by uniqueness). Since
Baker convention [ 2] holds, we have equality between the numerators and
the denominators of these two approximants.

As in the scalar case, the theory of orthogonality developed here, gives
us a new insight into these approximants. It allowed us to give a new
approach, a new formula of the error, conditions of the existence, and links
with the theory of orthogonal polynomials in the non-commutative case. In
the sequel, we shall easily obtain from this theory necessary and sufficient
conditions of the normality, new recurrence relations for computing these
approximants, and a gd-algorithm. Expressions with continued fractions



106 A. SALAM

are also given with explicit coefficients. Thus, we see that scalar theory is
perfectly generalized to the vector case. Clifford algebra and orthogonality
play a fundamental role.

5. NORMAL CASE

We shall use the following notations
[n+k/k], (1)=Ng*DLLE+ ()]~

where
N0 = ( X ) g+ o K0 (30)

i=0

Let us display the vector Padé approximants in a table as

[0/0] [0/1] [0/2]
[1/01 [1/11 [1/2]
[2/0] [2/1] [2/2]

DEFINITION 4. If VkeN, Vne Z, with n> —k +1, M{" is invertible, the
vector Padé table is said to be normal.

We have from [24]

THEOREM 8. The four following properties are equivalent:

(i) I™[x*L{] is invertible Vke N, Vne Z, with n> —k + 1.

(i) LY(0) is invertible, Vke N, Yne Z, with n> —k+1 and ¢, is
invertible.

(ii) N{(0) is invertible, VkeN, VneZ, with n> —k+1 and c, is
invertible.

(iv)  The vector Padé table is normal.

This theorem presents a drawback: in general, it is not easy to know if
an element of A, is invertible or not.
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Let us state a theorem giving a sufficient condition for the invertibility
required in Theorem 8. We shall denote by h} VkeN, VneZ with
n+k>1, the right Hankel designant

Cn Cnik

Covk 7 Cnyorlr
It was shown in [26] that this right Hankel designant 4% belongs to R
THEOREM 9. For all ke N, VneZ with n+k>1, ["[x*L{] is inver-
tible if and only if Vke N, Vne Z with n+k > 1, hj #0.
Proof. See [24]. 1

6. NEW ALGORITHMS, CONTINUED FRACTIONS,
¢d-ALGORITHM

In [24], we gave some recurrence relations between orthogonal polyno-
mials. These relations can be used to derive new algorithms for computing
recursively any sequence of vector Padé approximants in the table. From
the relations (see [24])

XLyt () = Ly o (%) + LE(X) G 41
Lyt (x) = Li(x) — Liti(x) e,
K M () =Ky () + K1) gy — e, L (1),
K (1) = tK(t) — ¢, Li(1) — K E5(1) e
and since
Li(x)=x"Ly(x7",  Ku(x)=x""'K}(x7"),
we derive
Ly 1(x) = LX) = xL(X) g 41 (31)
Ly (x) =Li(x) — XLZtll(x)ezs (32)
K 1(x) = xK3 1 (x) = xKU(X) gt + ¢, LN (X), (33)
XK (x) = Ki(x) = XK (x) e — ¢, Li(x). (34)

We begin first by the relations corresponding to a method due to Watson
in the scalar case [28] to compute recursively approximants located on a
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descending staircase of the Padé table. We shall make use of the same nota-
tions as in [4, 8 ]: knowing the two Padé approximants denoted by e, then
the Padé approximant denoted by = can be computed.

THEOREM 10. We have

NEOLLY (0] =

L] %

[NE+ D) — N g LD D0 = L) ¢y, (35)
NeHOrLes o1 ~t=
*

[NE(1) — eNEHD (@) e DL () — LD (1) €3]~ (36)

Proof. Given K, in terms of N, from (30) and using (31), we obtain
N2+1 =NZ+1—fNZ‘]Z+1-

Thus (35) is immediate. B B
In the same way, we express K, in terms of N, by using (30), and by
replacing in (34), we obtain

N+t =Ny — (N ther.
Thus, (36) is immediate by using (32). ||

It is not our purpose here to give all the possible relations. Let us only
say that the other relations exist for computing the vector Padé table in all
directions exactly as in the scalar case. This point will be treated in a
forthcoming paper. It is well known that the theory of orthogonal polyno-
mials and the theory of continued fractions are closely connected in the
scalar case since both satisfy a three-term recurrence relation. We shall
show that this aspect is still true in the vector case.

Let us consider the monic vector orthogonal polynomials L, and their
associated polynomials K,. From the three-term recurrence relationship
satisfied by L, and K, [24], we obtain

Ly 1(x) = Li(x)(1 + xBy 1) + x°Lg_1(X) Crey1 k=0, (37)
K 1(x) = K(x)(1 + xBye 1) + X°Ki_y(x) Coers - k=1 (38)

Let us use the convention a/b=ab~"' where a,be A,.
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It is easy to see that, in the non-commutative case, the successive
convergents

a,

A, _
F:An[Bn] '= a
" by + 2

by+
L
b

n

n

can be computed recursively by the relations
An+1=Anbn+l+An—lan+l> Bn+1=Bnbn+1+Bn—lan+1 (39)
with
AOZOa Al =dy,
By=1, B, =b,.

Let us consider the continued fraction

_ C, C,x? Cyx?
Clx) =
I1+Bx+ 1+ B,x+ 1+ B3x+
and denote by
~ C C,x? C,yx? Cpx?
Cul(x) 1 2 X 3X kX

" 1+B,x+ 1+Byx+ 1+ Byx+  1+B,x

its successive convergents.

THEOREM 11.  Cp(x)=[k—1/k],(x).

Proof. The assertion is true for k= 1.

Suppose it is true for k. Then, from the recurrence relations (39) among
the successive convergents of a non-commutative continued fraction, we see
immediately that

Iik(x)(l + By 1X) +I§k71(x) Ck+lx2=1§k+1(x)
Li(x)(1+ By g1 %)+ Ly 1(x) Cp x> Ly 4(x)

Crsrlx)= |

The continued fraction C is called the left vector continued fraction
associated with the series f. This property can be extended to the other
diagonals of the vector Padé table. Obviously, using the right vector
orthogonal polynomials R, and their associated polynomials Q,, similar
results exist with the convention a/b=b"'a.
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Let us now consider the continued fraction

Df(x)zcioq(l;xe?ixqgixegix.“
- 1-1-1-1-
Using the algorithm given by (39), it is easy to see that the convergents
D (x)=V,(x)/Ux) of D satisfy

Uzk+1 X)= UZk(x) —XUzk—l(x) 62,

(
Uzk+2(x) = U2k+1(x) *Xﬁzk(x) 92+1,

with Uy(x)=1 and U,(x)=1. Similar relations hold for ¥, with the
initializations V(x) =0 and V;(x) = c,. Thus comparing with the relations
(31), (32), (33), and (34), we get the

THEOREM 12.
Vo = K, Vw1 = oL + XK,
U2k:Ek9 Uzk+1 :Egcl),
and

Dzk(x) =[k— l/k]f(x)
D_2k+1(x) = [k/k]f(x)-
The continued fraction D is called the left vector continued fraction corre-
sponding to the series f. The other descending staircases of the vector Padé

table can be related to the corresponding left vector continued fractions in
a similar way. For that purpose, we have to consider the continued fractions

- c qut+1xerlt+lxqg+lxeg+lx
DP(x)=co+cix+ -+ 4+, x" +-2+1 .
(x)=coteyx+ +c,x" + - 11— 1- 1= 1=

for n> — 1. Designantal formulae for the e}’s and ¢}’s and some of their
other properties are given in [24].

THEOREM 13. We have
VkeN, VneZ  with n+k>1, K'K'eR[x],  (40)
VkeN, VneZ  with n+k>1, L['L"eR[x],  (41)
VkeN, VneZ  with n+k>1, K:L"eRIx], (42)

where R[x] (respectively R[x]) denotes the set of polynomials with real
coefficients (respectively vector coefficients) in one variable.
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Proof. It is shown in [ 14, 21] that

VkeN,VneZ withn+k>1,
N*N" eR[x], L"L" e R[x], N*L" € RY[ x]. (43)

From (30) we get x*'K" K" = (N" — (X" ¢;x") L) (N — L1(Y =4 ¢x')).

Using (1), (2), and (43), we deduce K} K} € R[x].
Since x"KjLy=(N}—(X7"=y ¢;x") Ly) L}, we obtain from (43) that

i=

K'i"eRx]. |

m

—_—

11.

12.

13.

Thus, the vector orthogonal polynomials L} and their associated polyno-
ials K7 satisfy the same properties.
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